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Abstract  
Vital information is usually lost during ordinal classification problems that incur misclassification error 
which affects predictions. In an attempt to minimize this error, this study investigates the effectiveness of 
adopting Linear Quadratic Discriminant Analysis method in the classification of ordinal dataset problem 
involving three group cases. In predictions of Food Security Status, there is a need to employ a powerful 
statistical tool that can correctly classify a household based on the Food Consumption Scores Profile 
indicator into “Poor”, “Borderline” and “Acceptable”. The approach was used to classify food security 
status of two counties in region of Kenya. The summary classification results showed that 89.9% of the 
original grouped cases were correctly classified while 89.1% of the cross-validation grouped cases were 
correctly classified. This approach can be employed by major International Organizations and 
Government of nations in their quest to minimize hunger and starvation all over the world.   
 
Keywords: Discriminant Analysis, Linear Quadratic Discriminant Analysis (LQDA), Ordinal 
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1. Introduction  

In order to understand certain patterns and identify the right group for easy predictions in categorical data, 
there is every need to employ certain Statistical techniques such as the Ordinal regression analysis, 
Principal Component analysis, etc. However some of these approaches have proven over time to be 
tedious in its classifications and validation approaches in dealing with ordinal categorical data like the 
classification and prediction of Food Security three proxy indicator variables via; Poor, Borderline and 
Acceptable. Therefore this paper employed the use of Discriminant Analysis to classify and predict Food 
Security Status of Households. (Brown 1984) opines that Discriminant Analysis (also referred to as 
Discriminant Function Analysis) is a powerful descriptive and classification approach that was developed 
by R.A Fisher in 1936 to mainly describe the characteristics that are peculiar to certain groups (known as 
descriptive discriminant analysis); and classify them into cases (that is individuals, subjects or 
participants) into pre-existing groups based on their similarities in the cases and other cases within the 
group (sometimes this is referred to as predictive discriminant analysis). Standard classification 
approaches for nominal classes can be applied to ordinal classification problems by ignoring the ordering 
information in the class attribute. Training samples of ordinal data set are labeled by a set of ranks, which 
exhibits an ordering among the different categories. However, huge information is lost during this 
analysis process that can potentially influence the predictive performance of a classifier. For instance, in 
studying the food security status of a household, there is every need to classify each household surveyed 
into three categories, prior to the Food Consumption Score (FCS). In doing such classification, ignoring 
the ordering class attribute, a household food security status may be misclassified and give rise to false 
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prediction of a household food security status. Therefore, this study seeks to utilize the Discriminant 
Analysis approach to address the issues of classification in ordinal data set. The main objective of this 
study is to determine the effectiveness of Linear Quadratic Discriminant Analysis (LQDA) approach in 
the classification of ordinal data set problem.  

2. Literature Review  

(Pinstrup-Andersen 2009; Barbosa and Nelson 2016) argues that the term "food security" has 
been used over time to mean different things. There are countless explanations affiliated to the 
concept of food security in literature over time have suggested that it is very useful to measure 
household and individual welfare, specifically if combined with estimates of household food 
acquisition and allocation behaviour. If nutritional security is the goal of interest, estimates of 
access to food should be combined with estimates of access to clean water and good sanitation. 
Anthrometric measures are likely to be more appropriate than food security estimates to target 
policies and programs to improved child nutrition.  (Pinstrup-Andersen, 2009) opines that the concept of 
food security has been widely used at the household level as a measure of welfare and attempts have been 
made to make the concept operationally useful in the design, implementation, and evaluation of programs, 
projects and policies. A household is considered food secure if it has the ability to acquire the food 
needed by its members to be food secure. In order to determine the food security status of a household, 
World Food Programme (WFP) adopted the use of the seven-days household dietary diversity food 
frequency to classify households based on three ordinal indicator levels via; "Poor", "Borderline", and 
"Acceptable" this have helped decision makers like WHO, UNICEF, World Bank etc. to distributes relief 
materials in Internally Display Persons (IDP) camp, disaster etc. According (Rencher 2012) In 
discriminant analysis for several groups, the major focus is on finding a linear combinations of variables 
that best separate the k groups of multivariate observations. (Brown 1984) uses the discriminant analysis 
approach in healthcare to study familiar clinical situations. His results showed how DA might be relevant 
to health care decisions, especially classification decisions. (Fransens, Prins, and Gool 2003) combined 
the Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) approaches to introduce a 
novel classification approach, which combines the normal directions idea with Support Vector Machine 
classifiers. The two make a natural and powerful match, as SVs are located nearby, and fully describe the 
decision surfaces. (Fernandez 2002) introduces the Non-parametric discriminant methods based on non-
parametric group-specific probability densities to evaluate the performance of a discriminant criterion 
which was attained by estimating probabilities of misclassification of new observations in the validation 
data.  

3. Materials and Methods 

Procedure for Data collections  

Two research assistants were employed and trained with regards to technical know-how, ethical 
and behavioural approach during data collections in the field. The data was collected using the smart 
phones ODK toolbox. The use of questionnaire structured in modules were used to interview 
correspondents, the module of interest was titled "Food Security Situation" which consist of sub-modules 
on coping strategy and household dietary diversity in order to obtain the frequency of food dietary 
diversity consumption in the last seven-days and ascertain its status. Two stage sampling method was 
employed in the data collection approach. In the first phase, the Cluster sampling was used to isolate the 
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targeted communities, and then simple random sampling without replacement (SRSWR) was employed in 
the second stage to randomly selecting the households. A total of Seven-hundred and fifty two entries 
were recorded from one hundred and fifty households visited. Further cleansing of the data and analysis 
were done using the predictive analytics software (PASW) version 21.0. 

Assumptions of Linear Discriminant Analysis 

Discriminant analyses calculate the probability of group membership based on the series of independent 
predictor variables. The predictor variables will be measure on a scale level measurement while the 
dependent variables will be categorical. The following assumptions are necessary in order to explore the 
discriminant analysis approach: 

• The dependent variable categories must be mutually exclusive 
• The predictors are independent of one another and are normally distributed with absence of 

outliers  
• There is no presence of multicollinearity among the predictors.  
• The relationship between all pairs if groups are linear  

Note: When dealing with a dependent variable with three levels, the use of multi-normal-logistic 
regression approach is adopted while with two levels the binary logistic regression is used.  

Observations vectors in the samples: 

𝑦11
𝑦12
⋮

𝑦1𝑛1

       

𝑦21
𝑦22
⋮

𝑦2𝑛2

 Are transformed to scars 

𝑍11
𝑍12
⋮

𝑍1𝑛1

       

𝑍21
𝑍22
⋮

𝑍2𝑛2

 

Consider the means: 

  

�̅�1 = �
𝑍1𝑖
𝑛1

𝑛1

𝑖=1

= 𝒂′𝑦�1 

�̅�2 = �
𝑍2𝑖
𝑛2

𝑛1

𝑖=1

= 𝒂′𝑦�2 

 where: 

𝑦�1 = �
𝑦1𝑖
𝑛1

𝑛1

𝑖=1

  

and  

𝑦�2 = �
𝑦2𝑖
𝑛2

𝑛2

𝑖=1

 

so that the vector 𝒂,  is the maximized the standardize difference 
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(𝑍1��� − 𝑍2���)
𝑆𝑍

=
[𝒂′(𝑦�1 − 𝑦�2)]2

𝒂′𝑆𝑃1𝒂
                                                                                         (1)   

  This will be maximum if 

 
𝑎 = 𝑆𝑃1−1(𝑦�1 − 𝑦�2) 

 
𝑎 = 𝑆𝑃1−1(𝑦�1𝑦�2) 

 Note that 𝒂 is not unique but its direction is unique. That us 𝒂𝟏,𝒂𝟐, … ,𝒂𝒑 are unique and 𝑍 = 𝒂′𝑦 project 

points 𝑦 onto the line on which (𝑍�1−𝑍�2)2

𝑆𝑍
2  is maximum also for 𝑆𝑃1−1 to exist, then, 𝑛1 + 𝑛2 − 2 > 𝑝. For the 

𝐾 groups (samples), consider 𝑛𝑖 observations in the 𝑖𝑡ℎgroup, transforming each observation vector 𝑦𝑖𝑗 to 
obtain , 𝑍𝑖𝑗  = 𝑎′𝑦𝑖𝑗 ,       𝑖 = 1,2, … , 𝑘; 𝑗 = 1,2, … . ,𝑛𝑖 .  

Consider the mean 

 
 �̅�𝑖 = 𝑎′𝑦�𝑖   

where, 

 

𝑦�𝑖 = �
𝑦𝑖𝑗
𝑛𝑖

𝑛

𝑖=1

 

with the prior aim to maximize the separate vectors  �̅�1, �̅�2, … , �̅�𝑘 . To express separation 
among 𝑍�1, �̅�2, … , �̅�𝑘, extend the separate criterion so that the k-group case can be express as 

 
𝒂′(𝑦�1 − 𝑦�2) = (𝑦�1 − 𝑦�2)′𝒂, 

 

then from equation (1),  

  
(�̅�1 − �̅�2)2

𝑆𝑍2
=

[𝒂′(𝑦�1 − 𝑦�2)]2

𝒂′𝑆𝑃𝑙𝒂
=
𝒂′(𝑦�1 − 𝑦�2)(𝑦�1 − 𝑦�2)′𝒂

𝒂′𝑆𝑃𝑙𝒂
                                                               (2) 

To extend equation (2) to k-groups, the concept of 𝑯 matrix from multivariate analysis of variance 
(MANOVA) is adopted instead of 

 
(𝑦�1 − 𝑦�2)(𝑦�1 − 𝑦�2)′, 

so that 𝑬 is used to replace 𝑆𝑃𝑙 to get 
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Ʌ =
𝒂′𝑯𝒂
𝒂′𝑬𝒂

                                                                                                                                                   (3) 

which can be further express as 

 

Ʌ =
𝑆𝑆𝐻(𝑍)
𝑆𝑆𝐸(𝑍) 

where 𝑆𝑆𝐻(𝑍) and 𝑆𝑆𝐸(𝑍) are the between and within sum of squares for Z. Then, equation (3) can be 
express as 𝒂′𝑯𝒂=Ʌ 𝒂′𝑬𝒂 ⇒ 𝒂′(𝑯𝒂 − Ʌ𝑬𝒂) = 𝟎     (4). Where the value of Ʌ and 𝒂 are derived from the 
solutions of equation (4) in a search for the values of 𝒂  that leads to maximum Ʌ . The solution 𝒂′ = 𝟎′  
is not feasible since it gives Ʌ = 0

0�  in equation (3), other solutions are obtained from the form  

�𝑬−𝟏𝑯 − Ʌ𝑰�𝒂 = 𝟎      (5) 
The solutions of equation (5) are the Eigen values 𝜆1, 𝜆2, … , 𝜆𝑠. Associated with the eigenvectors 
𝒂𝟏,𝒂𝟐, … ,𝒂𝒔 of 𝐄−𝟏𝐇. Now consider the ranks 𝜆1 >  𝜆2 > ⋯ > 𝜆𝑠, the number of non-zero eigenvalues s 
is the rank of 𝐇 which can be found as the smaller of 𝑘 − 1 or 𝒑. The largest eigenvalue 𝜆1is the 

maximum value of Ʌ = 𝒂′𝑯𝒂
𝒂′𝑬𝒂

 , and the coefficient vector that produces the maximum is the corresponding 
eigenvector 𝒂. The means are: 

 
 �̅�1 = 𝑎1′ 𝑦 

, where �̅�1 is the dimension that maximizes the means separated.  Consider the eigenvectors 𝒂𝟏,𝒂𝟐, … ,𝒂𝒔 
of  𝐄−𝟏𝐇 corresponding to 𝜆1, 𝜆2, … , 𝜆𝑠, then the s discriminant functions 𝑍1 = 𝑎1′ 𝑦, 𝑍2 = 𝑎2′ 𝑦,…, 

𝑍𝑠 = 𝑎𝑠′𝑦 
which shows the dimensions of difference among 

 
𝑦�1,𝑦�2, … , 𝑦�𝑘 

. This discriminant functions are uncorrelated, though not orthogonal (𝑎𝑖′𝑎𝑗 = 0,   𝑓𝑜𝑟 𝑖 ≠ 𝑗) since 𝐄−𝟏𝐇 
is not symmetric. The relative importance of each discriminant function 𝑍𝑖 can be determined by looking 
at its eigenvalue as proportional to the total: 

 
𝜆𝑖
∑ 𝜆𝑗𝑠
𝑗=1

�  

this is often used to show group dissimilarities. Usually the discriminant function of the smallest group is 
omitted.  

Measure of Association 

In order to determine the measure of association between the dependent variables 𝑦1,𝑦2, … ,𝑦𝑝 and the 
independent grouping variables 𝑖 relating to µ𝑖 ,    𝑖 = 1,2, … , 𝑘, the Roy’s Statistic 𝜃 is used to replace 𝑅2-
like measure of association. Since it is the ratio of between total sum of squares for the first discriminant 
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function 
 𝑍1 = 𝑎1′ 𝑦, 

  𝜂𝜃2 = 𝜃 =
𝜆1

1 + 𝜆1
=

𝑆𝑆𝐻(𝑍1)
𝑆𝑆𝐸(𝑍1) + 𝑆𝑆𝐻(𝑍1) 

.  

Canonical Correlation 

(Brown 1984) opines that the canonical correlation is to measure variability by a function that is unrelated 
to the group differences. The variability may be related to within sum of squared group differences or to 
various errors that occurred during the data collection and entry. The canonical correlation shows the 
amount of group variability retained by each function while the canonical correlation squared indicates 
the proportion of variance in a function that is associated to group differences. The squared canonical 
correlation, can also be used to calculate for each discriminant function: 

 

 𝑟𝑖2 =
𝜆𝑖

1 + 𝜆𝑖
 ,      𝑖 = 1,2, … , 𝑠 

. The average squared canonical correlation is used as measure of association. The larger the eigenvalues 
the more the correlations shows important functions.  

Standardized Discriminant Functions 

(Rencher 2012) used two group cases for the 𝑖𝑡ℎobservation vector 𝑦1𝑖  𝑜𝑟 𝑦2𝑖 in group 1 or 2, to express 
the discriminant function in terms of standardized variables as: 

𝑍1𝐼 = 𝒂𝟏∗
𝑦1𝑖1 − 𝑦�11

𝑆1
+ 𝒂𝟐∗

𝑦1𝑖2 − 𝑦�12
𝑆2

+ ⋯+ 𝒂𝑷∗
𝑦1𝑖𝑃 − 𝑦�1𝑃

𝑆𝑃
         (8), 𝑖 = 1,2, … ,𝑛1 

𝑍2𝐼 = 𝒂𝟏∗
𝑦2𝑖1 − 𝑦�21

𝑆1
+ 𝒂𝟐∗

𝑦2𝑖2 − 𝑦�22
𝑆2

+ ⋯+ 𝒂𝑷∗
𝑦2𝑖𝑃 − 𝑦�2𝑃

𝑆𝑃
         (9), 𝑖 = 1,2, … ,𝑛2 

Where 𝑦�1′ = (𝑦�11,𝑦�12, … ,𝑦�1𝑃) and 𝑦�2′ = (𝑦�21,𝑦�22, … ,𝑦�2𝑃) are the mean vectors for the two groups, and 
𝑆𝑟 is the within sample standard deviation of the 𝑟𝑡ℎ variable, obtained as the square root of the 𝑟𝑡ℎ 
diagonal element of 𝑆𝑝𝑙 so that 𝒂𝒓∗ = 𝑆𝑟𝒂𝒓,    𝑟 = 1,2, … ,𝑝 in vector form, this becomes 𝒂∗ =

�𝑑𝑖𝑎𝑔𝑆𝑝𝑙�
1
2� 𝒂 . For several group cases, standardize the discriminant function in analogous form. The 

𝑟𝑡ℎ dente the coefficient in the 𝑚𝑡ℎ discriminant function by 𝑎𝑚𝑟 ,    𝑚 = 1,2, … , 𝑠,     𝑟 = 1,2, … ,𝑝 then 
the standardized form is: 

 
𝒂𝒎𝒓∗ = 𝑆𝑟𝒂𝒎𝒓 

where 𝑆𝑟 is the within-group standardized deviation obtained from the diagonal of  

 
𝑆𝑝1 = 𝑬

𝑽𝑬�  

𝒂𝒎𝒓 have two subscripts due to the several discriminant functions. 
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Test of Significance 

This is required in order to check for the assumption of multivariate normality. 

The Wilk’s Ʌ −test of significance 

This is used to test for differences among mean vectors that are used. This is given by: 

Ʌ1 = �
1

1 + 𝜆𝐼
 

𝑆

𝑖=1

, 

which is distributed as Ʌ𝑝,𝑘−1, where 𝑁 = ∑ 𝑛𝑖𝑖=1  for which unbalance design or 𝑁 = 𝑘𝑛 in balance case. 
Where Ʌ1 is the small if one or more 𝜆𝑖’s are large, Wilk’s tests for significance of the eigenvalue and 
thereby the discriminant functions. The S eigenvalues represent S dimensions of separation of the mean 
vectors 𝑦�1,𝑦�2, … ,𝑦�𝑘. Emphasize lie whether any of these dimensions are significant. More so, the exact 
test provided by the critical values for Ʌ using 𝜒2 −approaximation given by 

𝑉𝐸 = 𝑁 − 𝑘 = �𝑛𝑖
𝑖=1

− 𝑘 

and 
 𝑉𝐻 = 𝑘 − 1 

𝑉1 = − �𝑉𝐸 −
1
2

(𝑃 − 𝑉𝐻 + 1)� 𝑙𝑛Ʌ1 = − �𝑁 − 1 −
1
2

(𝑃 + 𝑘)� 𝑙𝑛�
1

1 + 𝜆𝐼

𝑆

𝑖=1

 

= − �𝑁 − 1 −
1
2

(𝑃 + 𝑘)��𝑙𝑛(1 + 𝜆𝑖)             (10)
𝑆

𝑖=1

 

, Which is approximately 𝜒2with 𝑝(𝑘 − 1) degrees of freedom. If the test leads to rejection of 𝐻0, then at 
least one of the Ʌ’s is significantly different from zero, which shows that there is at least one dimension of 
separation of mean vectors. In general, for 𝑚𝑡ℎstep, the test statistic can be express as: 

Ʌ𝑚 = �
1

1 + 𝜆𝐼

𝑆

𝑖=𝑚

 

 which is distributed as Ʌ𝑝−𝑚+1,𝑁−𝑘−𝑚+1, the statistic is given by: 

 

 𝑉𝑚 = − �𝑁 − 1 −
1
2

(𝑃 + 𝑘)� 𝑙𝑛Ʌ𝑚 = − �𝑁 − 1 −
1
2

(𝑃 + 𝑘)�� 𝑙𝑛(1 + 𝜆𝑖)
𝑆

𝑖=𝑚

          (11) 

has an approximation as 𝜒2 − distribution with (𝑃 + 𝑚 + 1)(𝑘 − 𝑚) degrees of freedom. If 

 
𝜆𝑖
∑ 𝜆𝑗𝑗
�  

is small, the associated discriminant function may not be of interest, even if it is significant.  
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Predictive Discriminant Analysis 

Classification into several Groups: Equal Population Covariance Matrices Linear Classification Function. 
Assume that ∑1 = ∑2 = ⋯ = ∑𝑘 the estimated common population covariance matrix given by the 
pooled sample covariance matrix as: 

 

𝑆𝑝𝑙 =
1

𝑁 − 𝑘
�(𝑛𝑖 − 1)𝑆𝑖

𝑘

𝑖=1

=
𝑬

𝑵 − 𝒌
      (12) 

, where 𝑛𝑖  and 𝑆𝑖  are the sample size and covariance matrix of the 𝑖𝑡ℎ group, 𝑬 is the error matrix for one-
way MANOVA and 𝑁 = ∑ 𝑛𝑖𝑖 , compare 𝑦 to each 𝑦�𝑖   ,          𝑖 = 1,2, … , 𝑘 . The distance function is given 
by 

𝐷𝑖2(𝑦) = (𝑦 − 𝑦�𝑖)′𝑆𝑝𝑙
−1(𝑦 − 𝑦�𝑖)            (13) 

, and assign 𝑦 to the group for which 𝐷𝑖2(𝑦) is smallest. Expanding equation (13), the linear classification 
rule is derived as 

 
𝐷𝑖2(𝑦) = 𝑦′𝑆𝑝𝑙−1𝑦 − 𝑦′𝑆𝑝𝑙−1𝑦�𝑖 − 𝑦�𝑖′𝑆𝑝𝑙−1𝑦 + 𝑦�𝑖′𝑆𝑝𝑙−1𝑦�𝑖 = 𝑦′𝑆𝑝𝑙−1𝑦 − 2𝑦�𝑖𝑆𝑝𝑙−1𝑦 + 𝑦�𝑖′𝑆𝑝𝑙−1𝑦�𝑖 

. Neglect the term 𝑦′𝑆𝑝𝑙−1𝑦 on the RHS since it is a function of 𝑖. The second term is a linear function of 𝑦, 
and the third term does not have 𝑦. Therefore, omit 𝑦′𝑆𝑝𝑙−1𝑦 and obtain a linear classification function, 

denoted by 𝐿𝑖(𝑦). From normal distribution and prior probabilities, multiply through by − 1
2� , then 

assign 𝑦 to the group, so that 

 

𝐿𝑖(𝑦) = 𝑦�𝑖′𝑆𝑝𝑙−1𝑦 −
1
2
𝑦�𝑖′𝑆𝑝𝑙−1𝑦�𝑖                           , 𝑖 = 1, . . , 𝑘,                (14)       

is a maximum. As a function of 𝑦, this can be written as:  

 
𝐿𝑖(𝑦) = 𝑐𝑖′𝑦 + 𝑐𝑖𝑜 = 𝑐𝑖1𝑦1 + 𝑐𝑖2𝑦2 + ⋯+ 𝑐𝑖𝑝𝑦𝑝 + 𝑐𝑖𝑜 

where 

 
𝑐𝑖′ = 𝑦�𝑖′𝑆𝑝𝑙−1 

and 

 

 𝑐𝑖𝑜 = −
1
2
𝑦�𝑖′𝑆𝑝𝑙−1𝑦�𝑖 

. Calculate 𝑐𝑖 and 𝑐𝑖𝑜 for each of the k-groups, evaluate 𝐿𝑖(𝑦),   𝑖 = 1, … , 𝑘 and allocate 𝑦 to the group for 
which 𝐿𝑖(𝑦) is the largest. Assign 𝑦 to the group for which 𝑝𝑖𝑓(𝑦|𝐺𝑖) is maximum to minimize the  
probability of misclassification. Assume normality with equal covariance matrices and with probabilities 
of group membership 𝑝1,𝑝2, … ,𝑝𝑘, then 𝑓(𝑦|𝐺𝑖) = 𝑁𝑝(𝜇𝑖 ,𝑍). Then the rule in equation (14) can be 
estimated in place of parameter 
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𝐿𝑖(𝑦) = 𝑙𝑛𝑝𝑖 + 𝑦�𝑖′𝑆𝑝𝑙−1𝑦 −
1
2
𝑦�𝑖′𝑆𝑝𝑙−1𝑦�𝑖 ,     𝑖 = 1, … , 𝑘 

and assign 𝑦 to the group with maximum value of 𝐿𝑖(𝑦), where 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘, 𝐿𝑖(𝑦) is the linear 
classification function. If  

 
∑1 = ∑2 = ⋯ = ∑𝑘 

 does not hold, the classification rules can easily be altered to preserve optimality of classification. In 
place of equation (12), consider: 

𝐷𝑖2(𝑦) = (𝑦 − 𝑦�𝑖)′𝑆𝑖
−1(𝑦 − 𝑦�𝑖)                       , 𝑖 = 1, . . , 𝑘,     (15) 

Where 𝑆𝑖 is the sample covariance matrix for the 𝑖𝑡ℎgroup following same rule and approach the linear 
function of 𝑦 is a quadratic function. Replace 𝑆𝑖 with 𝑆𝑝𝑙 so that the optimal rule based on 𝑝𝑖𝑓(𝑦|𝐺𝑖) will 
now be: 

𝑄𝑖(𝑦) = 𝑙𝑛𝑝𝑖 −
1
2

ln|𝑆𝑖| −
1
2

(𝑦 − 𝑦�𝑖)′𝑆𝑖
−1(𝑦 − 𝑦�𝑖), 

is maximum if 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘 and 𝑛𝑖 > 𝑝 for 𝑆𝑖−1 to exist.  

Group Centroids 

This refers to the mean discriminant scores of the members of a group on a given discriminant function. 
For classification and prediction purposes, the discriminant score of each group case is compare to each 
group centroids and the probability of group membership are obtained.   

Estimating Misclassification Rates 

In order to ascertain the power of classification approach so as to improve on accuracy of predictions of 
group membership correctly, there is every need to adopt the use of probability misclassification approach 
also known as the error rate. Whereas the complement of misclassification rate is refers to as correct 
classification rate. The proportion of misclassification resulting from resubstitution is known as apparent 
error rate. The results can be represented in a classification table also known as the confusion matrix. For 
two groups, the apparent error is given by: 

 

𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝑛12 + 𝑛21
𝑛1 + 𝑛2

=
𝑛12 + 𝑛21

𝑛11 + 𝑛12 + 𝑛21 + 𝑛22
 

While the apparent correct classification rate 

 

 =
𝑛11 + 𝑛22
𝑛1 + 𝑛2

 

, thus, apparent error rate = 1 − apparent correct classification rate  

Cross-Validation 
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(Fernandez 2002) opines that this is a critical approach to verification of a discriminant analysis results 
especially if the researcher tends to classify other samples into the group of interest. In cross-validation, 
there are several methods but the most likely used methods include the Jack Knife procedure, the Hold-
out method. The later approach involves splitting the sample randomly into two parts with two-thirds of 
the sample belonging to “developmental” sample and one-third of the sample allocated to a “cross-
validation” sample. The accuracy of classification for the small sample indicates the hit rate the 
Researcher expects to achieve in fewer samples.  

4. Results 

The data for this study was analyzed using the predictive analytics software popularly referred to as 
SPSS, the results were graphed and using tables to elicit some vital information.  
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5. Discussion  

The first table showed the test for normality. The P-Value for Shapiro-Wilk’s test is needed to check if 
there are outliers and how well the data is normally distributed. The assumption however was violated 
since the p-values showed that they are all statistically significant. This however showed that the 
distribution was mostly skewed to the right-tailed and majority of the households surveyed were at the 
Borderline and Acceptable. Only few households were Poor.   In order to check for linearity, the data file 
is split since it is organized based on group, then patterns are observed using the aid of the scatter plots 
from bottom left to the right upward. From the scatter plots it is clearly that the first plot has the dots 
scatter randomly, the second and third plots showed the dots mostly concentrated to the right. Though this 
is not in-line with the expectations of the Researcher, in general the assumption was slightly satisfied. 
Next the assumption of multicollinearity is considered by carrying out a bivariate correlation test. The 
Pearson correlation at 0.05 and 0.01 two-tailed level of significance tests were used to check for the 
weakest correlation 0.032 and the strongest correlation 0.585 this showed that all the correlations were 
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below 0.80 or 0.90 which means that the assumption of multicollinearity was satisfied.   Having satisfied 
all the assumptions of prime importance, one can go ahead to carry out the linear quadratic discriminant 
analysis test. In the group statistics table among all the information listed, the mean for the three levels of 
the outcome variables and the predictor variables are of prime importance (consider from the least to the 
greatest). Under Poor Profile indicator mean levels, Milk, Fruits, Meat and Fish have the lowest 0.00, 
Main Staple had the highest 9.33, under Borderline indicator profile, , Milk, Fruits, Meat and Fish have 
the lowest 0.35, Main Staple had the highest 11.65, under Acceptable indicator profile, Fruits had the 
lowest 2.18 while Milk has the highest 15.99. In overall, Milk is the highest with 14.49 while Fruits was 
the lowest with 2.01. The next table to consider was the test of Equality group means table. The 
significant column showed that all the P-Values for the Wilk’s Lambda are significant for the predictor 
variables. The Box’s test of equality of covariance matrices tables looking mainly at the log-determinant 
column; the first row revealed that there are too few cases to be non-singular; the second row 7.265 is far 
close to 12.786 and 13.602 which are much closer to each other.  From the test result table, it can be 
clearly seen that all the results are statistically significant which implies that they do not have equal 
covariance matrices. Note: here the p-Value is evaluated with 𝛼 = 0.01 not 0.05 which is commonly 
used. Consider the Canonical discriminant functions for the eigenvalues test, here considerations are 
given to the two listed with priority given to the function with greater eigenvalues which is 0.632 this 
means that the data fit the model. Consider the canonical correlation of the greatest eigenvalue which is 
0.622, the square of this is 0.3869 this denote the effect size. Consider the Wilk’s Lambda table shows 
that the both test functions are statistically significant, consider next the standardized canonical 
discriminant function coefficients table, compare this with the structure matrix table, ideally this is 
expected to be similar for instance Pulses is 0.504 in the latter table and 0.538 in the former table and so 
on. Though not all the values were consistent e.g. Milk is 0.377 in latter and 0.465 in the former which 
shows a lot of disparity, but the major goal here is to check if all the values in the structure matrix table 
are greater than 0.30. Next, consider the canonical discriminant function coefficients table, this is needed 
to build a discriminant function, the constant at the bottom is -9.859 then the unstandardized coefficients 
in function 1 are used.  Consider the functions at Group Centroids, with main concentrations on function 
1. The Profile column under Poor is -4.915, Borderline is -2.275 and Acceptable is 0.253 these are needed 
to make comparison between each group membership discriminant score and the probability of how each 
members were obtained. This is vital for classification and prediction purposes. Now consider the 
Classification Statistics, looking at the Classification coefficients table, the highest values here is 
Vegetables with Poor 4.85, Borderline 9.44, and Acceptable 10.08, second by Main Staple, Sugar and 
Pulses. Next, consider the Classification results table concentrating most on the percentage that the model 
accurately predicted the outcome. For Poor Profile indicator, 3 were counted and predicted 100%, 
Borderline counted 54 and predicted 78.3%, and Acceptable counted 618 and predicted 90.9%. Therefore, 
the highest level of classification is in the Poor Profile prediction which is 100%, the lowest is Borderline 
predictions which is 78.3%. The bottom summary classification result showed that 89.9% of the original 
grouped cases were correctly classified. While in the cross-validation analysis which is done mainly for 
the cases in the analysis, one can note that each case is classified by the functions derived from all cases 
other than that case itself. In this stance, 89.1% of cross-validated grouped cases were correctly classified. 
𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 1 − 0.899 = 0.101 = 10.1%.  

6. Conclusion and Recommendations  

In this study, it was shown that the Linear Quadratic Discriminant Analysis approach fit the model for 
classifications in large ordinal data set problem. From the results summary of classification it is worthy to 
note that most of the households in Kitui and Makueni regions of Kenya are generally food secure only 
few household have shown food insecurity. As such, this method can be used by international 
organizations like the World Food Programme (WFP), WHO, NEMA, UN, AU, etc. in their quest to 
conquer hunger and poverty in regions of Africa and the World. Linear Discriminant Analysis approach is 
a powerful classification approach which makes a good prediction yet it is worthy to note that as the data 
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set becomes bigger in size, the ability to adopt the use of Discriminant Analysis is meaningless, little 
wonder the error rate 10.1% and 10.9% these error margins are quite large and should not be taken 
slightly. Therefore, it will be recommended that a more powerful data mining tool be employ like the use 
of Support Vector Machine (SVM) classification approach that will incorporate the Kernel Method in the 
margin classification of support vectors along the hyperplanes, and since it perform better in high 
dimensional datasets. 
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